Highlighted images

Recommended Prompts

masterpiece,PureErosFace_V1,best quality,[highly detailed face:0.1],1girl,a full body portrait of a 21 years old beautiful gorgeous cute busty Korean kpop girl,pink eyes,(jieunc_kor:0.8),long hair,slender body,black hair,detailed face,(grapefruit),perfect anatomy,(temple in background),contrapposto,sitting,Cannon EOS 5D MARK III,kimono,50mm Sigma f/1.4 ZEISS lens,medium breasts,F1.4,light smile,1/800s,arms behind back,ISO 100,photorealistic,trending on instagram

Recommended Negative Prompts

disgusting,worst quality,low quality,logo,text,watermark,username
NG_DeepNegative_V1_75T,(worst quality,worst quality,low quality:1.4),low quality,logo,text,monochrome,nipples,nude

Recommended Parameters

samplers Euler a
steps 20-40
cfg 11
resolution 512×768

Tips

  • Use embedding with negative prompts like (worst quality, low quality, logo, text, watermark, username).
  • For models trained with more than 75 tokens, consider using smaller token versions to avoid errors.

Version Highlights

put it in negative prompts

Creator Sponsors

All sponsors are not affiliates of Diffus. Diffus provides an alternative online Stable Diffusion WebUI experience.

If you use SDXL, recommended this 👉 DeepNegative for SDXL version

This embedding will tell you what is REALLY DISGUSTING🤢🤮

So please put it in negative prompt😜

⚠This model is not trained for SDXL and may bring undesired results when used in SDXL.

TOP Q&A

  • how to use TI model?

https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion

  • what is negative prompt?

https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Negative-prompt

[Special Reminder] If your webui reports the following errors:

CUDA: CUDA error: device-side assert triggered

Assertion -sizes[i] <= index && index < sizes[i] && "index out of bounds" failed

XXX object has no attribute 'text_cond'

Please try using a model version other than 75T.

> The reason is that many scripts do not handle overly long negative prompt words (greater than 75 tokens) properly, so choosing a smaller token version can improve this situation.

[Update:230120] What does it do?

These embedding learn what disgusting compositions and color patterns are, including faulty human anatomy, offensive color schemes, upside-down spatial structures, and more. Placing it in the negative can go a long way to avoiding these things.

What is 2T 4T 16T 32T?

Number of vectors per token

[Update:230120] What is 64T 75T?

64T: Train over 30,000 steps on mixed datasets.

75T: embedding limit maximum size, training 10,000 steps on a special dataset (generated by many different sd models and special reverse processing)

Which one should choose?

  • 75T: The most ”easy to use“ embedding, which is trained from its accurate dataset created in a special way with almost no side effects. And it contains enough information to cover various usage scenarios. But for some “good-trained-model” may hard to effect

    and, change about may be subtle and not drastic enough.

  • 64T: It works for all models, but has side effect. so, some tuning is required to find the best weight. recommend: [( NG_DeepNegative_V1_64T :0.9) :0.1]

  • 32T: Useful, but too more

  • 16T: Reduces the chance of drawing bad anatomy, but may draw ugly faces. Suitable for raising architecture level.

  • 4T: Reduces the chance of drawing bad anatomy, but has a little effect on light and shadow

  • 2T: ”easy to use“ like T75, but just a little effect

Suggestion

Because this embedding is learning how to create disgusting concepts, it cannot improve the picture quality accurately, so it is best used with (worst quality, low quality, logo, text, watermark, username) these negative prompts.

Of course, it is completely fine to use with other similar negative embeddings.

More examples and tests

How is it work?

I tried to make SD learn what is really disgusting with deepdream algorithm, the dataset is imagenet-mini (1000 images chosen randomly from the dataset again)

deepdream is REALLLLLLLLLLLLLLLLLLLLLY disgusting 🤮 and process of training this model really made me experience physical discomfort 😂

Backup

https://huggingface.co/lenML/DeepNegative/tree/main

Contributor

Picture of Kate Thompson

Kate Thompson

I'm the gallery editor at Diffus and I write blogs on topics related to AI art. With expertise in Midjourney, Dalle 3, and Stable Diffusion, I actively contribute to Reddit, Facebook, and Discord communities. I meticulously curate top AI-generated content, ensuring our gallery's excellence.

Leave a Reply

Model collection - Deep Negative V1x

An AI generated image using stable diffusion of a glass rose with intricate crystal petals, surrounded by other pink roses and green leaves.

Deep Negative V1x - V1 75T

Model details

Model type

TextualInversion

Base model

SD 1.5

Model hash

54e7e4826d

Model version

V1 75T

Trained words

ng_deepnegative_v1_75t

Creator

Reference



Model Review

Leave a Reply

Images by Deep Negative V1x

WeissSchnee Fantasy Cityscape Illustration

Green-Eyed Woman on City Rooftop

Wendy Marvell Illustration in Fantasy Town

Cowboy Alien Poker in Neon-Lit Saloon

Queen of Snow Surreal Landscape

Digital Painting of Noir Blonde Portrait

Gorgeous Elf Woman in Fantasy Forest

Battletech Bipedal Robot with Olive Green Armor

Fantasy Warrior in Gold Armor

Dragon Girl in Neon City

Anime Girl in Lagombi Armor at Night

Cyberpunk Wolf Head in Block Print

Astrologian in Black Coat Under Starry Sky

Anime Character with Blonde Ponytail

Anime Character in Cinematic Library

Anime girl in baseball uniform

Creepy girl crawling out of television

Horror Woman Crawling Through TV

Fantasy elf girl with braids and large eyes

Anthropomorphic Dog Character in Bus